skip to main content


Search for: All records

Creators/Authors contains: "Krohn, O. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 22, 2024
  2. Resonance stimulated Raman signal and line shape are evaluated analytically under common electronic/vibrational dephasing and exponential Raman/probe pulse, exp(−|t|/τ). Generally, the signal from a particular state includes contributions from higher and lower electronic states. Thus, with S 0 → S 1 actinic excitation, the Raman signal consists of 15 Feynman diagrams entering with different signs. The negative sign indicates vibrational coherences in S 1 or higher S n , whereas the positive sign reveals coherences in S 0 or S n via S 1 → S n → S m (n < m) coupling. The signal complexity is in contrast to spontaneous Raman with its single diagram only. The results are applied to femtosecond stimulated Raman spectra of trans–trans, cis–trans (ct), and cis–cis (cc) 1,4-diphenyl-1,3-butadiene, the ct and cc being reported for the first time. Upon actinic excitation, the Stokes spectra show negative bands from S 1 or S n . When approaching higher resonances S n → S m , some Raman bands switch their sign from negative to positive, thus, indicating new coherences in S n . The results are discussed, and the measured Raman spectra are compared to the computed quantum-chemical spectra. 
    more » « less
  3. null (Ed.)
    One of the fundamental goals of chemistry is to determine how molecular structure influences interactions and leads to different reaction products. Studies of isomer-selected and resolved chemical reactions can shed light directly on how form leads to function. In the following, we present the results of gas-phase reactions between acetylene cations (C 2 D 2 + ) with two different isomers of C 3 H 4 : propyne (DC 3 D 3 ) and allene (H 2 C 3 H 2 ). Our highly controlled, trapped-ion environment allows for precise determination of reaction products and kinetics. From these results, we can infer details of the underlying reaction dynamics of C 2 H 2 + + C 3 H 4 . Through the synergy of experimental results and high-level quantum chemical potential energy surface calculations, we are able to identify distinct reaction mechanisms for the two isomers. We find long-range charge exchange with no complex formation is favored for allene, whereas charge exchange leads to an intermediate reaction complex for propyne and thus, different products. Therefore, this reaction displays a pronounced isomer-selective bi-molecular reactive process. 
    more » « less